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ABSTRACT

We present an approach for accurate estimation of the reconstruction
distortion in SNR scalable video coding with drift. Based on a linear
model of predictive video coding, we derive an algorithm to quan-
tify spatio-temporal drift properties subject to prediction structure
and motion information. This allows for low-complex estimation
of the reconstruction distortion on a per-block basis. The accuracy
of the distortion estimation is experimentally verified. We then uti-
lize the method for quality layer assignment within the framework of
H.264/AVC scalable video coding (SVC), which is currently under
standardization. The quality layers allow for bit stream truncation in
a rate-distortion optimized sense. Compared to the quality layer as-
signment as implemented in the SVC test model, use of backward
drift estimation allows for achieving equivalent coding efficiency
with reduced complexity.

Index Terms— Error propagation, hierarchical B pictures, qual-
ity layers, SVC, H.264/AVC

1. INTRODUCTION

Motion compensated temporal filtering (MCTF) has proven to pro-
vide a robust basis for highly efficient scalable video coding. Hi-
erarchical temporal prediction based on B pictures can be seen as
a specific instantiation of MCTF. It is a fundamental element of
H.264/AVC scalable video coding (SVC), which is currently jointly
developed by ISO/IEC MPEG and ITU-T VCEG [1, 2]. The hier-
archical B prediction structure enables effective attenuation of error
drift, which is inevitably caused if a SVC bit stream is decoded at
a bit rate lower than that used for operating the prediction loop at
the encoder [3]. The propagation of an encoder-decoder mismatch
at a particular spatio-temporal location in the reconstruction process
is strictly related to the prediction correspondences, and is therefore
strongly dependent on the motion information. In our previous work
[4], we have developed a linear model of the prediction process un-
der consideration of the coding control, based on which the impact
of drift can be estimated. Using a heuristic approach to quantify the
propagation properties, it was shown that consideration of the poten-
tially remaining drift can allow for optimization of the bit allocation
during encoding, and consequently improved coding efficiency.

In this paper, we propose an analytic approach for quantifica-
tion of the spatio-temporal error propagation properties in predictive
video coding. Using the presented backward drift estimation algo-
rithm, accurate error propagation correspondences, considering the
exact mode information and sub-pel accurate motion vectors, can
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be derived on a per-pixel basis. To reduce the computational com-
plexity, the algorithm is generalized to derive correspondences on a
per-block basis or a per-picture basis.

While in existing drift estimation approaches, such as [5, 6],
the expected distortion is tracked subject to a-priori knowledge of
quantization errors or quantization error probabilities, our approach
derives generic correspondences between spatio-temporal regions,
which can then later be utilized to determine the impact of individ-
ual quantization errors. This allows for accurate rate-distortion op-
timized bit allocation. Furthermore, other than [5, 6], our approach
is capable of coping with error correlations caused by error propa-
gation over different paths, which can frequently occur within hier-
archical B prediction structures. Additionally, sub-pel interpolation
can be accurately considered.

We verify the accuracy of our drift estimation method by predict-
ing the reconstruction distortion based on the per-pixel quantization
error. It is then applied to quality layer assignment in SVC. Use of
quality layers allows for bit stream truncation in a rate-distortion op-
timized sense [2, 7]. We show that compared to the quality layer
assignment as implemented in the SVC test model, use of back-
ward distortion estimation allows for achieving equivalent coding
efficiency with reduced complexity. The approach is similarly ap-
plicable to other bit allocation problems in predictive video coding
schemes with drift, such as [4, 8].

The paper is organized as follows. The key elements of the in-
vestigated system are outlined in Sec. 2. In Sec. 3, we review the
formulation of our linear distortion model for predictive video cod-
ing with drift. The drift estimation algorithm is developed in Sec. 4.
In Sec. 5 we provide experimental verification of our approach, and
utilize the method for optimized quality layer assignment in SVC.
Sec. 6 concludes the paper.

2. INVESTIGATED SYSTEM

2.1. Hierarchical B Pictures

In Fig. 1a, a temporal prediction structure with hierarchical B pic-
tures and T = 3 levels is illustrated. f t

z denotes the picture at tem-
poral position z and temporal resolution t. Here, t = 0 corresponds
to the coarsest temporal resolution, and t = T − 1 corresponds to
the finest resolution. The arrows indicate the prediction dependen-
cies, e.g. picture f2

1 is predicted by a bi-directional motion compen-
sated reference picture generated from pictures f 0

0 and f1
2 . In [1, 2],

flexible reference picture positions can be signaled for prediction.
However, the SVC test model implements the fundamental dyadic
decomposition structure according to Fig. 1a, where a picture f t

z is
predicted from the two nearest neighboring pictures associated with
a temporal resolution less than t.
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ĉ
1

ĉ
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Fig. 1. (a) Hierarchical B prediction structure with T = 3 levels.
(b) Progressive refinement quantization with N FGS layers.

2.2. Progressive Refinement Quantization

SNR scalability in SVC is enabled by utilization of either enhance-
ment slices (CGS/MGS), or progressive refinement slices (FGS) [2].
The approaches differ in their respective quantization and coding
schemes, representing different trade-offs between complexity and
granularity of scalability. While our presented distortion model holds
equally for either scheme, we employ FGS coding in this paper.

The basic FGS quantization principle is illustrated in Fig. 1b.
Here, pn denotes the unquantized prediction residual information,
0 ≤ n ≤ N , and ĉn denotes the quantized transform coefficients
of the nth FGS layer, where n = 0 corresponds to the quality base
layer. Note that when multiple prediction loops are operated at the
encoder, the input signals pn may be different from each other.

The forward and backward spatial transform operations are de-
noted as S and S−1, respectively, and the quantization stage as-
sociated with layer n is represented by Qn. For each FGS layer,
quantization is performed on the refinement information relative to
the preceding layers. To allow for progressive refinement, the quan-
tizer step sizes must be monotonically decreasing with n. In SVC,
the step size is halved with each FGS layer.

SVC enables fine granular SNR scalability on the bit stream
level by truncation of network abstraction layer units containing pro-
gressive refinement information (PR-NALUs). To allow for low-
complex rate-distortion optimized bit stream truncation, the relative
importance of each of the respective NALUs can be signaled in the
NALU headers. This concept is denoted as quality layers [7].

3. MODEL-BASED ESTIMATION OF THE
RECONSTRUCTION DISTORTION

In the following, we review the linear formulation of the predic-
tion operations introduced in [4, 8], and derive a linear distortion
model for an SVC codec. While throughout this paper we assume
that a single prediction loop is operated at the highest FGS layer [3],
i.e. pn = pN = p, ∀n, the model can be generalized for the case of
multiple prediction loops according to [4]. Fixed motion information
is assumed, and non-linear effects (rounding, clipping, deblocking)
are neglected. We denote x as an L × 1 vector comprising the L
original (unquantized) samples of a dependently coded subset of the
input video sequence (e.g., see Fig. 1a). The linear prediction oper-
ations are expressed as follows.

p = x −Mx̂
enc − Ix̂

bl − k (1)

Here, the unquantized prediction residual is represented as an L ×
1 vector p. The L × L matrices M and I express the motion-
compensated temporal prediction and the directional intra predic-
tion, respectively. x̂enc, x̂bl and k are L × 1 vectors, where x̂enc

denotes the prediction reference used within the encoder prediction

loop, and x̂bl represents the sequence reconstructed from the quality
base layer without FGS refinement. k represents a static prediction
such as intra DC prediction. Note that x̂bl is used as intra prediction
reference [2] since it is guaranteed to be available to the decoder
regardless of the amount of FGS refinement. Thus, any intra pre-
diction drift is avoided. Assuming the samples in x are arranged in
macroblock coding order, M and I are strictly lower triangular ma-
trices. Moreover, since intra prediction is constrained [2], Ii,j = 0
if not both i and j are indices of intra coded pixels.

The spatial forward transform, quantization, and backward trans-
form processes can be formulated as

c = Sp, (2)

p̂ = S
−1 (c + q)

= S
−1

c| {z }
p

+ S
−1

q| {z }
e

. (3)

Here, S and S−1 are L×L matrices expressing the spatial forward
and backward transform operations, respectively, generating the L×
1 vector of transform coefficients, c. Quantization is represented by
addition of an L×1 random vector q, which depends on the decoded
bit rate. p̂ and e denote the reconstructed residual signal and the
quantization error after backward transform, respectively.

The reconstruction is generated based on the prediction refer-
ences available to the decoder. From Eq. (3) and Eq. (1), it follows

x̂ = p̂ + Mx̂ + Ix̂
bl + k

= x + M (x̂ − x̂
enc) + e. (4)

Decoding the full bit stream including all FGS layers equivalents
a classical drift-free prediction scheme with x̂ = x̂enc and

x̂
enc − x = e

enc. (5)

For reconstruction with quantization error edec, substituting Eq. (5)
into Eq. (4) yields [4]

x̂
dec − x = e

dec + B
“
e

dec − e
enc
”

, (6)

with B + 1 = (1−M )−1 . (7)

Here, 1 is the L× L identity matrix, and B is a strictly lower trian-
gular L× L matrix.

Since there is no inter prediction within a picture, we observe
that Bi,j = 0 if both i, j ∈ fz . Furthermore, we assume that quanti-
zation errors in different pictures are uncorrelated, i.e. E [eiej ] = 0
if the indices i and j do not belong to the same picture, with E [·]
denoting the expectation. For samples within a given picture fz , we
further assume that

E[

L−1X
i=0

L−1X
j=0

j �=i

“
edec

i − eenc
i

”“
edec

j − eenc
j

” X
k∈fz

Bk,iBk,j ] = 0. (8)

This is reasonable for high bit rates, where quantization errors can
be assumed to be uncorrelated. It is also reasonable for homoge-
neous full-pel motion, where neighboring quantization errors should
not interact during reconstruction, i.e. Bk,iBk,j = 0. With these
assumptions, we can formulate the expected quadratic distortion of
picture fz as follows.

E[Dfz ] = E[
X
i∈fz

“
x̂dec

i − xi

”2

]

=
X
i∈fz

0
B@“edec

i

”2

+

L−1X
j=0

j �∈fz

B2
i,j

“
edec

j − eenc
j

”2

1
CA(9)
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It can be seen that the squared matrix elements B2
i,j determine the

expected distortion contribution to the reconstruction at position i,
caused by a drift term introduced at position j. Note that as of
the generic formulation of the model, the elements B2

i,j can reflect
any temporal prediction structure. Particularly, sub-pel interpolation
is seamlessly integrated, and for hierarchical prediction structures,
Fig. 1a, the case where multiple correspondences over different paths
exist between i and j is accurately represented.

4. BACKWARD DRIFT ESTIMATION ALGORITHM

Considering the triangularity of M and B, we derive an algorithm to
determine the correspondence factors B2

i,j as follows. From Eq. (7)
it can be shown that B = (B + 1) M . Equivalently, we write

Bi,j(l) = Mi,j +

l+1X
k=L−1

Bi,kMk,j , ∀i > j, (10)

such that Bi,j = Bi,j(−1). Note that the sum index k is counted in
descending order. This definition is convenient in the derivation of
the algorithm below. To allow for both pixel based and block based
derivation of correspondence factors, we formulate the expectation
of the correspondence between two blocks I andJ , with A = |I| =
|J | the number of pixels per block.

BIJ (l) := E i∈I
j∈J

[Bi,j(l)]

=
1

A2

X
i∈I
j∈J

Mi,j +
1

A

X
j∈J

l+1X
k=L−1

BIKMk,j , (11)

BSIJ (l) := E i∈I
j∈J

[B2
i,j(l)]

=
1

A2
E[
X
i∈I
j∈J

 
Mi,j +

l+1X
k=L−1

Bi,kMk,j

!2

]

=
1

A2

X
i∈I
j∈J

 
M2

i,j +

l+1X
k=L−1

BSIKM2
k,j+ (12)

2

l+1X
k=L−1

Mk,jE[Bi,k

 
Mi,j +

k+1X
m=L−1

Bi,mMm,j

!
]

!

Here, BIJ = BIJ (−1) and BSIJ = BSIJ (−1). With Eq. (10),
we write the last term in Eq. (12) as

2

A2

X
i∈I
j∈J

l+1X
k=L−1

Mk,jE[Bi,kBi,j(k)]

=
2

A

X
j∈J

l+1X
k=L−1

Mk,j

„
BIKBIJ (k) +

ρ
q

(BSIK −B2
IK

)
`
BSIJ (k)−B2

IJ
(k)
´«

, (13)

where ρ accounts for cross-correlations between the elements con-
tributing to BIK and BIJ (k). Finally, from Eq. (11) – Eq. (13), we
derive the following algorithm.

initialize BIJ = 0, BSIJ = 0, ∀I,J
scan sequence in reverse coding order, ∀K

scan pixels k ∈ K (direct establishing)
scan j ∈ J , ∀J , such that Mk,j �= 0

BKJ ← BKJ + 1

A2 Mk,j

BSKJ ← BSKJ + 1

A2 M2
k,j

scan ∀I, such that BSIK �= 0

scan pixels k ∈ K (indirect establishing)

θ ← BIKBIJ + ρ
q

(BSIK −B2
IK

)
`
BSIJ −B2

IJ

´
scan j ∈ J , ∀J , such that Mk,j �= 0

BIJ ← BIJ + 1

A
BIKMk,j

BSIJ ← BSIJ + 1

A
BSIKM2

k,j + 2

A
Mk,jθ

The video sequence is scanned in backward coding order. For each
motion compensated temporal prediction Mk,j , the respective ele-
ments BKJ , BSKJ are updated (direct establishing). Furthermore,
for each existing correspondence BSIK originating from K, the el-
ements BIJ , BSIJ are updated (indirect establishing). For A = 1,
the algorithm accurately calculates the results of Eq. (11) – Eq. (13),
with B2

i,j = BSIJ . For A > 1, BSIJ is used as an approximation

for B2
i,j .

The computational complexity of the algorithm depends on the
number of establishing steps to be performed. The number of indi-
rect establishing steps depends on the respective number of existing
correspondences BSIK, which can be roughly expected to scale with
1/A. For picture based derivation, the number of correspondences
equals the number of dependent pictures. For a T -level B prediction
structure with T > 2, it can be shown that the average number of
pictures depending on a B picture is less than T − 1. Hence, since
each B picture requires one direct establishing step, at most T estab-
lishing steps are performed in average. For a given k, the inner loops
over j for Mk,j �= 0 represent the prediction dependencies including
interpolated pixels. For picture based derivation, the contributions of
the individual interpolation taps can be summed-up instead of pro-
cessing each tap separately. It can therefore be assumed that the
complexity of each establishing step is c < 1, where c = 1 repre-
sents the complexity of the motion compensation operations for the
respective picture. It follows that the total complexity of the algo-
rithms is at most cT times the complexity of the motion compensa-
tion operations used for reconstruction of the video sequence.

5. EXPERIMENTAL RESULTS

In our experiments, we use the SVC test model JSVM-6 [3] with hi-
erarchical B pictures. We use eight QCIF 15 Hz test sequences with
different characteristics, and encode with T = 5 temporal levels and
N = 2 FGS layers.

In the first experiment, we verify the accuracy of the distortion
model and the drift estimation algorithm . We use two different block
sizes, 4 × 4 and 176 × 144 (picture size), to quantify the drift cor-
respondences. We extract each bit stream at 11 equally distributed
target bit rates, and determine the quantization errors, edec. eenc

is obtained from the non-truncated bit stream. We then use Eq. (9)
to estimate the reconstruction distortion for each picture, and based
on that, we calculate the estimated mean PSNR over each of the se-
quences. We thus obtain estimated PSNR measures for each of the
extracted bit rates without performing the actual reconstruction.

Table 1 depicts the mean and maximum absolute differences of
the estimated measures as compared to the true PSNR values ob-
tained after decoding, for different values of ρ, with Δ = PSNRest−
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4× 4 176× 144
ρ mean |Δ| max |Δ| ρ mean |Δ| max |Δ|

0.0 0.350 1.392 0.0 0.376 1.452
0.2 0.259 1.091 0.1 0.315 1.233
0.4 0.191 0.725 0.2 0.267 1.004
0.6 0.233 0.526 0.3 0.233 0.753
0.8 0.414 0.899 0.4 0.245 0.577
1.0 0.695 1.347 0.5 0.305 0.753

Table 1. Mean and maximum absolute PSNR estimation error [dB].

PSNRtrue. It can be seen that a mean absolute estimation error of
about 0.2 dB over all tested sequences can be achieved. Although
the minimal achievable estimation errors are slightly lower for the
case of 4×4 block based drift estimation, the results are very similar
as for picture based estimation. We also observed similar results for
pixel based derivation. This indicates that the distortion estimation
error is primarily caused by inaccurate approximations used in the
distortion model, see Sec. 3. We conclude that for picture based op-
timization of the bit allocation, it is sufficiently accurate to derive the
drift correspondences on a per-picture basis. Derivation on smaller
block bases will be advantageous for more localized bit allocation,
such as in [4, 8].

We now use our distortion estimation technique for quality layer
assignment. After encoding a sequence, the backward drift estima-
tion algorithm is performed on a per-picture basis with ρ = 0.3. We
then extract the quantization errors eenc, edec corresponding to the
base layer and each of the FGS layers. Based on that, starting with
the highest FGS layer, we use the distortion model to compute the
estimated PSNR. Then the expected decrease ΔDz in PSNR is cal-
culated for the least significant remaining PR-NALU of each picture
fz , with ΔRz the bit budget of that NALU. The PR-NALU with the
lowest rate-distortion slope ΔDz/ΔRz is assigned the least signif-
icant quality layer. Starting from the now estimated PSNR, the al-
gorithm is repeated until all PR-NALUs are assigned a quality layer.
The obtained quality information is possibly merged according to
[7], such that the maximum number of quality layers defined in SVC
is not exceeded.

The resulting coding performance of the scalable bit stream after
quality layer assignment is exemplarily depicted in Fig. 2 . It can be
seen that compared to the quality layer assignment in JSVM-6, our
approach provides equivalent coding gain. Furthermore, while the
quality layer assignment in JSVM-6 requires 2NT decoding passes
to establish the required rate-distortion dependencies [3], our al-
gorithm is less complex, requiring the equivalent of cT decoding
passes, with c < 1.

6. CONCLUSION

We have presented a model-based method for drift estimation in
SNR scalable video coding. The accuracy of the prediction has been
experimentally verified. The method has then been utilized for qual-
ity layer assignment within the framework of H.264/AVC scalable
video coding. For the case of single-loop FGS coding, compared
to the quality layer assignment method in the SVC test model, our
approach achieves equivalent coding efficiency with reduced com-
putational complexity.

The presented distortion estimation approach can also be uti-
lized for applications requiring consideration of spatially localized
drift properties, such as macroblock-based bit allocation. As of its
generality, the algorithm can principally be used for estimation of
error propagation in any lifting-based MCTF system.
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Fig. 2. Simulation results for FGS coding with quality layer assign-
ment (QLA) based on backward drift estimation (BDE).
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